Hall	Ticke	t Nu	mber:

Time: 3 hours

2.1 20/3 p(00.0

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD M.E. (Mech. Engg.: CBCS) I-Semester Main Examinations, January-2019

(Advanced Design & Manufacturing)

Finite Element Techniques

Max. Marks: 60

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Q. 1	Io Stem of the Question	M	L	CO	PO
	Part-A $(10 \times 2 = 20 \text{ Marks})$	ignore:			
1. State principle of Minimum Potential Energy.			1	1	1
2.			2	1	2
3.	Compare the maximum value of the stresses in each case of the truss element shown below:	2	3	2	3
			-		-
4.	Explain the variation of bending stresses in a beam element formulation.	2	2	2	3
5.	Explain briefly the concept of Isoparametric approach in a Triangular 2D element.		2	2	
6.	Find u, u ₁ , u ₂ , W ₁ and W ₂ for the following integral formulation. As per two point numerical integration. $\int_{a}^{b} f(x)dx = \int_{a}^{1} f(u)du = W_{1} f(u_{1}) + W_{2} f(u_{2})$	2	4	3	5
7.	Develop various boundary conditions to be imposed on a triangular plate under 2D steady state heat transfer.	2	2	3	5
8.	The Eigen values of a dynamic system are 64 and 108. Find its fundamental frequency in Hz.	2	4	3	5
9.	Calculate the stiffness matrix for a Shaft of $d = 20 \text{ mm}, L = 60 \text{ mm}, G = 80 \times 10^3 \text{ N/mm}^2.$	2	3	3	3
10.	In plate bending, elaborate minimum degrees of freedom to be considered at each node.	2	1	4	1
	$Part-B (5 \times 8 = 40 Marks)$	0	2	2	
11.	Compute Stresses in axial bar with linear load shown below: Take $E = 180$ GPa, A = 100mm ² . x=0 1 x=1 = 40mm 3	8	3	L	2
	consider the load as 2 KN at node 2 which is a mid-node				

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	
1	Fundamental knowledge (Level-1 & 2)	50%
2	Knowledge on application and analysis (Level-3 & 4)	35%
3	*Critical thinking and ability to design (Level-5 & 6) (*wherever applicable)	15%