VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD M.E. (Mech. Engg.: CBCS) I-Semester Main Examinations, January-2019

 (Advanced Design \& Manufacturing)
Finite Element Techniques

Time: $\mathbf{3}$ hours
Max. Marks: 60
Note: Answer ALL questions in Part-A and any FIVE from Part-B

| Q. No | Stem of the Question |
| :--- | :--- | :--- |
| Part-A $(10 \times 2=20$ Marks $)$ | |
| 1. State principle of Minimum Potential Energy. | |
| 2. Discuss the application of the FEM for analyzing fluid flow problem. | |
| 3. Compare the maximum value of the stresses in each case of the truss element shown | |
| below: | |

4. Explain the variation of bending stresses in a beam element formulation.
5. Explain briefly the concept of Isoparametric approach in a Triangular 2D element.
6. Find $u_{,} u_{1}, u_{2}, W_{1}$ and W_{2} for the following integral formulation. As per two point numerical integration.

$$
\int_{a}^{b} f(x) d x=\int_{-1}^{1} f(u) d u=W_{1} f\left(u_{1}\right)+W_{2} f\left(u_{2}\right)
$$

7. Develop various boundary conditions to be imposed on a triangular plate under 2D steady state heat transfer.
8. The Eigen values of a dynamic system are 64 and 108. Find its fundamental frequency in Hz .
9. Calculate the stiffness matrix for a Shaft of

$$
d=20 \mathrm{~mm}, L=60 \mathrm{~mm}, G=80 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}
$$

10. In plate bending, elaborate minimum degrees of freedom to be considered at each node.

$$
\text { Part-B }(5 \times 8=40 \text { Marks })
$$

11. Compute Stresses in axial bar with linear load shown below: Take $\mathrm{E}=180 \mathrm{GPa}$, 8323 $A=100 \mathrm{~mm}^{2}$.

consider the load as 2 KN at node 2 which is a mid-node
12. Compute stresses in each link of Three member truss structure shown below:

13. Deduce shape functions for the following quadrilateral element:

Node numbers: 1, 2, 3 and 4.

14. A metallic fin of thermal conductivity $\mathrm{K}=15 \mathrm{~W} / \mathrm{cm}-{ }^{\circ} \mathrm{C}$ is shown in the figure. Compute the temperature distribution across its length.

15. Elaborate the FEM approach to determine 3D Stresses in an elastic body.
16. a) Derive basic relations between strain and displacements.
b) Why frame element analysis is equivalent to the combination of truss element and beam element.
17. Answer any two of the following:
a) List point wise various assumptions needed for finite element formulation of Axisymmetric models.
b) Sketch the mode shapes against three nodded axial bar having frequencies: $0,12 \mathrm{rad} / \mathrm{s}$ and $28 \mathrm{rad} / \mathrm{s}$ and corresponding amplitude ratios: $[1.2$ 2.6], [0.5-1.6] and [1-1]
c) Write basic sequence steps used in commercial ANSYS software.
$\begin{array}{llll}4 & 2 & 3 & 3\end{array}$
$\begin{array}{llll}4 & 5 & 4 & 5\end{array}$
$\begin{array}{llll}4 & 2 & 5 & 2\end{array}$

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 \& 2)	50%
2	Knowledge on application and analysis (Level-3 \& 4)	35%
3	*Critical thinking and ability to design (Level-5 \& 6)	
(*wherever applicable)	15%	

